Octopus arm movements under constrained conditions: adaptation, modification and plasticity of motor primitives.

نویسندگان

  • Jonas N Richter
  • Binyamin Hochner
  • Michael J Kuba
چکیده

The motor control of the eight highly flexible arms of the common octopus (Octopus vulgaris) has been the focus of several recent studies. Our study is the first to manage to introduce a physical constraint to an octopus arm and investigate the adaptability of stereotypical bend propagation in reaching movements and the pseudo-limb articulation during fetching. Subjects (N=6) were placed inside a transparent Perspex box with a hole at the center that allowed the insertion of a single arm. Animals had to reach out through the hole toward a target, to retrieve a food reward and fetch it. All subjects successfully adjusted their movements to the constraint without an adaptation phase. During reaching tasks, the animals showed two movement strategies: stereotypical bend propagation reachings, which were established at the hole of the Perspex box and variant waving-like movements that showed no bend propagations. During fetching movements, no complete pseudo-joint fetching was observed outside the box and subjects pulled their arms through the hole in a pull-in like movement. Our findings show that there is some flexibility in the octopus motor system to adapt to a novel situation. However, at present, it seems that these changes are more an effect of random choices between different alternative motor programs, without showing clear learning effects in the choice between the alternatives. Interestingly, animals were able to adapt the fetching movements to the physical constraint, or as an alternative explanation, they could switch the motor primitive fetching to a different motor primitive 'arm pulling'.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinematic decomposition and classification of octopus arm movements

The octopus arm is a muscular hydrostat and due to its deformable and highly flexible structure it is capable of a rich repertoire of motor behaviors. Its motor control system uses planning principles and control strategies unique to muscular hydrostats. We previously reconstructed a data set of octopus arm movements from records of natural movements using a sequence of 3D curves describing the...

متن کامل

Learning by imitation with the STIFF-FLOP surgical robot: a biomimetic approach inspired by octopus movements

Transferring skills from a biological organism to a hyper-redundant system is a challenging task, especially when the two agents have very different structure/embodiment and evolve in different environments. In this article, we propose to address this problem by designing motion primitives in the form of probabilistic dynamical systems. We take inspiration from invertebrate systems in nature to...

متن کامل

Organization of octopus arm movements: a model system for studying the control of flexible arms.

Octopus arm movements provide an extreme example of controlled movements of a flexible arm with virtually unlimited degrees of freedom. This study aims to identify general principles in the organization of these movements. Video records of the movements of Octopus vulgaris performing the task of reaching toward a target were studied. The octopus extends its arm toward the target by a wave-like ...

متن کامل

Patterns of arm muscle activation involved in octopus reaching movements.

The extreme flexibility of the octopus arm allows it to perform many different movements, yet octopuses reach toward a target in a stereotyped manner using a basic invariant motor structure: a bend traveling from the base of the arm toward the tip (Gutfreund et al., 1996a). To study the neuronal control of these movements, arm muscle activation [electromyogram (EMG)] was measured together with ...

متن کامل

Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 218 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2015